Scientists Have Invented a Graphene-Based Sieve That Turns Seawater Into Drinking Water, by Fiona MacDonald.
Researchers have achieved a major turning point in the quest for efficient desalination by announcing the invention of a graphene-oxide membrane that sieves salt right out of seawater.
At this stage, the technique is still limited to the lab, but it’s a demonstration of how we could one day quickly and easily turn one of our most abundant resources, seawater, into one of our most scarce – clean drinking water.
The team, led by Rahul Nair from the University of Manchester in the UK, has shown that the sieve can efficiently filter out salts, and now the next step is to test this against existing desalination membranes. …
“Water molecules can go through individually, but sodium chloride cannot. It always needs the help of the water molecules,” Nair told Paul Rincon from the BBC. “The size of the shell of water around the salt is larger than the channel size, so it cannot go through.”
Not only did this leave seawater fresh to drink, it also made the water molecules flow way faster through the membrane barrier, which is perfect for use in desalination. …
Graphene oxide is also a lot easier and cheaper to make in the lab than single-layers of graphene, which means the technology will be affordable and easy to produce.