SA Blackout: Three towers, six windfarms and 12 seconds to disaster

SA Blackout: Three towers, six windfarms and 12 seconds to disaster, by Joanne Nova.

Let the analysis begin. The world is watching, because this is the first large scale catastrophic failure of a major power grid that, apparently, is due to renewables. South Australia is one of the world’s leaders in renewables, and (this is so poignant) it blew up its last coal station only three weeks before. Awesome timing greenies.

Finally, the gritty info we’ve been waiting for: The Australian Energy Market Operator’s (AEMO) preliminary report. The message here is of how a combination of both transmission towers failing and probably the auto-shut-off of wind farms combined in 12 seconds to crash the South Australian system. It’s looking awfully bad for the wind industry. The AEMO pins the crash on the sudden reduction from the wind generators, but stops short of declaring why they dropped power so suddenly. Was it the auto-shut-offs, lightning strikes, a software glitch,  turbine failure, or was it a key transmission line that broke?  Reneweconomy is about the last-man-standing trying to defend the wind industry in Australia. Giles Parkinson argues it was the third transmission line that took out some wind generation.

Even if the third transmission tower took out two “farms”, the fragility of wind-dominated grids is on display. And above and beyond this, South Australian electricity is a management debacle.

The only question is, which mistake was the worst: Is this is epic indulgence of running the wind farms flat out in a storm only to trigger a blackout with their auto shut offs? There’s a compelling case, but there are tenths or less of a second between events in these graphs, and no confirmation.

If it was transmission towers that ultimately broke the system, things don’t look better for wind power which needs so many long transmission lines to capture energy from sites spread far and wide, rather than connecting a few centralized spots like coal stations — and that’s expensive.

We’re still left wondering why were these towers so weak, was it freak tornados — where is that documentation?  Then there is the unknowable — could it have been prevented if the Port Augusta  coal station was still running, or if the wind farms had turned off earlier in an orderly fashion, or if the transmission towers had been solid?

The bottom line is that wind energy comes at a very high cost and makes the system either very expensive or horribly fragile or both. Given that wind farms aren’t providing cheap electricity — when the infrastructure and the costs of having back up “spinning reserve”  and baseload is taken into account — what’s the point of adding all this risk to the system? To change the weather?

How many engineers saw this epic fail coming?

See earlier coverage here, here, here, and here. And a reminder: